Gerald C Hsu
eclaireMD, USA
Title: Relationship between metabolism and obesity along with type 2 diabetes and cardiovascular risk
Biography
Biography: Gerald C Hsu
Abstract
Introduction: By using the big data on one patient (author), this clinical paper describes the relationship between the metabolism state and medical conditions, including obesity, diabetes, and cardiovascular risk.
Methodology: The obese patient was diagnosed with type 2 diabetes (T2D), hyperlipidemia, hypertension for over 25 years along with suffering five cardiac episodes during 1994-2006. The study processed ~1.5M detailed metabolic conditions and lifestyle data (2012-2018) based on a math-physical medicine approach (mathematics, physics, engineering modeling, artificial intelligence or AI), rather than the traditional biochemical medicine method. The author defined two new terms: Metabolism Index (MI) and General Health Status Unit (GHSU) to evaluate a person’s overall metabolism and associated chronic diseases. The research steps are 1. observing the patient’s physical phenomena and metabolic changes, collecting relevant big data. 2. building up engineering models and deriving inter-relationship equations, applying statistics tools for variance study. 3. using machine learning and AI to predict important metabolic changes.
Results: Metabolic factors and health symptoms show some key results within eight years.
Conclusions: This math-physical medicine approach has proven the close relationship between metabolic changes quantitatively
due to the improvement of lifestyle management and chronic disease conditions.